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OPTIMIZED LAMBDA-PARAMETRIZATION
FOR THE QCD RUNNING COUPLING CONSTANT
IN SPACELIKE AND TIMELIKE REGIONS*

A.V.Radyushkin

The algorithm is described that enables one to perform an explicit summation of all the
(n2 / In’ Q@ 2 / Az))N~corrections to o (@ 2) that appear owing to the analytic continuation from
spacelike to timelike region of the momentum transfer.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.
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1. Introduction

Perturbative QCD is intensively applied now to various processes involving large

momentum transfers, both in spacelike (q2 =— Q2 < 0) and timelike (q2 > 0) regions (for a
review see [1-—3]). However, the coupling constant g(u) (i.e., the expansion parameter) is
defined usually with the reference to some Euclidean (spacelike) configuration of momenta
of scale yt. For spacelike g this produces no special complications. One simply uses the
renormalization group to sum up the logarithmic corrections (qz(u) In (Q2/ uz))N that
appear in higher orders and arrives at the expansion in the effective coupling constant
aa(Qz) which in the lowest approximation is given by the famous asymptotic freedom

formula [1].

*This letter is the copy of the unpublished preprint E2-82-159, JINR, Dubna (1982 year)
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4n
(11-2N,/3)In(Q%/AY’
where A is thc «fundamental» scale of QCD. In general, the A-parametrization of o. (Q ) is

(@)= 1)

a series expansion in 1 /L (where L=In (Q / AZ)), and the definition of A is fixed only if
the O(1 /L?)-term is added to eq. (1) [4].

For timelike q there appear, however, in-factors (In (Q / H ) =In (q /K )+ in), and it
is not clear a priori what is the effective expansion parameter in this region. This problem
has been discussed recently in a very suggestlve paper by Pennmgton and Ross [5]. These

authors analysed the ratio R(q Y=0o(e'e > hadrons) /o(e*e” - 'y for which the
analytic continuation from the scapellkc to timelike region is well defined and mvestlgated

which of the three ansiitze o (q ), |(x (— q )| and Re o, (— q ) better absorbs the (1c2 / L2

corrections! in the timelike region q > 0. Their conclusion was that |0Ls(-q )l is better
than as(qz) and Re o (- qz). Nevertheless, it is easy to demonstrate by a straightforward
calculation that |0Ls(— qz)l cannot absorb all the (1t2 / LZ)N-terms associated with the

analytic continuation of the In (Q2 / u2)-factor. Our main goal in the present letter is to
show that by using the A-parametrization for o (Q 2) in the spacelike region it is possible

to construct for R(qz) in the timelike region the expansion in which all the (n2 / L2)N -terms
are summed up explicitly.

2. A-Parametrization in Spacelike Region

The starting pomt for the A-parametrlzatlon is the Gell-Mann-Low equation taken as a
series expansion in G=q¢, /AT

2
b,by - b7

b,
L=1n(Q%AY =1 +b—InG+A+ Le+ocH, 2)

b,G
0 0

where b, are B-function coefficients: b =11-2N, /3 1], b,=102-38N /3 {61,

b12”8= 2857/2 - 5033Nf/ 18+ 325Nf2/54 [7]. The parameter A in eq. (2) is due to the lower

boundary of the GML integral [8,9]. By a particular choice of A one fixes the definition of
A A =A(A)2. Eq. (2) is solved by iterations and the result is reexpanded in 1 /L:

2
o(Q )____ _f'_l 1 L2 ﬁL +b2bo‘b1
b,L L b2 1 bg

«

+0(1/L% ] 3)

where

lOdd powers of (in/L) cancel because R is real
of course, A depends also on the renormalization scheme chosen.
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b
_bi In (b,L) - A. 4)
The expansion (3) is useful, of course, only if it converges rapidly enough. In fact, the

convergence of the 1 /L series depends (i) on the value of L we are interested in and (ii)
on the choice of A.

We emphasize that the most important for perturbative QCD is the region L > 3, since
L =3 corresponds to o~ 0.5, and the reliability of perturbation theory for larger o is

questionable. Hence, in a realistic situation the naive expansion parameter 1/L is smaller
, than (but usually close to) one third. Of course, 1/3 is not very small, so one must check
the coefficients of the 1/L expansion more carefully. First, there is a A-convention-inde-

pendent term (bzbo—b%) / (bng) which reduces for Nf= 3 to roughly 0.25/ I? and gives,
therefore, less than 3%-correction to the simplest formula (1). There are also A-convention-
dependent terms like L, /L, L,/ L? and one should choose A so as to minimize the upper
value of the ratio L, /L in the L-region of interest.

If one takes, e.g., A =Aopt= (bl/b(z)) In (4b), then L, = (bl/b(z)) In(L/4) and the ratio
1/ L is smaller than 7% in the whole region L > 3. Another choice [10] is to take
A= A(QO) (b, / b? o In( LO) where L, =1In (Qo / Az) and Q0 lies somewhere in the middle
of the Q -region analysed. In this case le(bl/bo) In (L/LO), ie., LI/L is zero for

Q2 = Qo2 and smaller than 7% for all in the region where L > 3. An important observation

is that both the choices minimize the corrections not only in eq. (3) but also in the GML
equation (2).

Really, for small G the only dangerous term in 1 eq. (2)is InG, hence the best thing to
do is to compensate it by taking A=—(b,/ b2) In G, where G is o (@ ) /4n averaged (in

—

[=)

some sense) over the relevant Q -region. After this has been done, one may safely solve
eq. (2) by iterations and perform the 1/L-expansion. For a proper choice of A eq. (3) has
1% accuracy for L > 3, and, moreover, the total correction to the simplest formula (1) is less

than 10%. However, accepting the most popular prescription Apop=(b1 / b(zl) In b0=
=A(Q2=eA2) (the only motivation for Apop being the «aesthetic» criterion that Ll should
have the shortest form L, =(bl/.b(2)) InL) one minimizes Ll/L in the region Q2~3/\2

nobody is really interested in. Moreover, in the important region L~3 one has
L‘;OP/L ~1/3 and the convergence of the 1/L-series is very poor in this case.

Thus, the A-parametrization (eq. (3)) gives a rather compact and sufficiently precise
expression for the effective coupling constant in the spacelike region provided a proper
choice of the A-parameter has been made.

3. A-Parametrization and R(e+e_—>Hadrons; s)

The standard procedure (see, e.g., [11] and references therein) is to calculate the
derivative D(Q 2) = det / sz of the vacuum polarization #Q 2) related to R by
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' 1 . .
R(s) = o (t(— s+ ie) — t(— s — ig)). 5)
In perturbative QCD 'D(Q 2) is given by the o (Q 2)-expansion:
2 2, \2 2, \2
00y (0@ R ]
2y 2 s s s
D(Q )—2eq{1+ - +d2[ - ] +d3{ - } +.. . (6)
q

Only d, is known now [11,12], its value depending on the renormalization scheme

chosen. Using eq. (5) and the definition of D, one can relate R(s) (or, more precisely, its
perturbative QCD version RQCD(s)) directly to D(Q 2)

-5+ i€ d
| po%Z. )

-85 ~— i€

ocp, 1
RO =o0m

Integration in eq. (7) goes below the real axis from — s — i€ to zero and then above the real
axis to — s + i€, '

In a shorthand notation D = R = ®[D]. In some important cases the integral (7) can be
calculated explicitly:

1=1, ®)
N (11:/L)—i l—ln—2+ 9
L~ gt =T 320
[+ . s s
In(L,/L) In (‘jLz+1t§ /Ly~ (L /myarctg (m/L)+1
2 = 2, 2 = (10)
L L +xn
o) 5
In(L,/Ly) 2 5 2
='—L2—!1—§+.. +€E+.... (1
5 R
1oL _1l,=2,
L2 r*+x? 2} 2 '
3 ) R)
1 n_ 1 (dY 2 1 1(., mnn+l
L =1 (n—l)![dLS] L2+n2_Ln[I_L2 6 +...4, (12)
s ) s

where L=In(s/ A2), L.,=In(c/ A2) and L, is the constant depending on the A-choice.

Using the A-parametrization for ac(c) and incorporating egs. (8)—(12) (as well as their

generalizations for L / LZ, InL/ L3, etc.) produces the expansion for
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REP©=(T D1+ 3, 4, Dl(e,/n) (13)
q k=1
in which all the Z(1c2 / LZ)N-terms are summed up explicitly.

4. Quest for the Best Expansion Parameter

Note that the expansion (13) is not an expansion in powers of some particular
parameter since the application of the ®-operation normally violates nonlinear relations:

o1/ L2] #(®[1/ L])2, etc. A priori, there are no grounds to believe that a power expansion
is better than any other (say, Fourier). In fact, the expansion (13) converges better than the

generating expansion (6) for D(0) because, as it follows from egs. (9)—(12), <D[oc:'] is

always smaller than aiv. Moreover, (d)[oziv ”]l/ N +l<(<I>[ot?’])1/ N, i.e., the effective
expansion parameter decreases in higher orders. Thus, if one succeeded in obtaining a good
ozf expansion for D(6) (with all d,, being small numbers), then the resulting <D[0c§v]-

expansion for ROCD (s) is even better, and the best thing to do is to leave it as it is.

However, if one insists that the result for RECD (s) should have a form of a power
expansion, then the best expansion parameter is evidently ®[o /7] because the largest

nontrivial (i.e., O(c /7)) term of the expansion is reproduced in the exact form and only

higher terms are spoiled. The analogue of the simplest A-parametrization for o (Q 2) (eq.
(1)) is then

~ 2 4 1
o =— arctg | —————— |. (14
{7) =5, e ( In (¢*/A) ] ‘

Using egs. (8)—(13) it is easy to realize that as(qz) is really a bad expansion parameter,

because if one reexpands &v(qz) in ozv(qz), then there appear terms with large coefficients

(T 12 (o ) ] l o, Y2 ‘
I—E(T] Y oo 1—17{?] +...[. (15

If one reéxpands &x(qz) in Re o= qz) then the corresponding coefficient is even 2

& (49 = o ()

times larger, whereas if &v(qz) is reexpanded in Iot‘(— q2)|, the coefficient is 2 times

smaller. This observation is in full agreement with the result of Ref. [S] quoted in the
introduction.

5. Concluding Remarks

It should be noted that the change of the expansion parameter as given by eq. (15)
affects only the (o / n)® coefficient of the RQCD-expansion which has not been calculated

yet. So, within the present-day accuracy, all expansions for R9P have the same
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coefficients. It is worth emphasizing, nevertheless, that the n° /L2 terms produce for
o > 0.3 more than 20%-correction to o, ie., they are more important (for an optimal

choice of the A-parameter) than the 2-loop corrections in eq. (3)).

To conclude, we have described the construction of an optimized (i.e., rapidly
convergent) A-parametrization for the effective QCD coupling constant in the spacelike
region, and then we used it to obtain the fastest convergent expansion for the timelike
quantity R9D (5)- The technique outlined in the present paper can be applied also to other
R2D Jike quantities. Such quantities do appear, e.g., in the QCD sum rule approach [13]
in which the analysis of hadronic properties is based on the study of vacuum correlators of
various currents. They appear also in an alternative approach [14] based on the finite-
energy sum rules [15). It should be stressed that in the latter approach the R2Dlike
quantites enter into the basic integral relation, and the analysis is most conveniently
performed if one has a simple analytic expression similar to that described above.
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